The number \mathbf{N} is a multiple of 4 . It lies between 10 and 40. 3 is a factor of N. When 4 is added to N, it becomes a multiple of 7 .
a) Find N
b) Find the smallest number that should be
 subtracted from \mathbf{N} to make it a multiple of 5

Your solution here:

Chapter 2
 FACTORS \& MULTIPLES

A number P has exactly 3 factors. P is between 10 and 30 . Find P.

Your solution here:

Chapter 2

 FACTORS \& MULTIPLES

 FACTORS \& MULTIPLES}

Mrs. Tina age now is a multiple of 4. She is younger than 50 years old and is twice as old as Mrs. Kavya now. Next year Mrs. Tina age will be a multiple of 5 . How old was Mrs. Kavya last year ?

Your solution here:

a) Have you noticed that $A \times B$ is a multiple of A and a multiple of B ?

Using numbers between 0 and 10 for A and B, give
i) an example where $A \times B$ is not the smallest common multiple of A and B,
 FACTORS \& MULTIPLES
ii) an example where $A \times B$ is not the smallest common multiple (but still a common multiple) of A and B.

In the second case, is there any relationship between the smallest common multiple of A and B and the actual value of $A \times B$?
b) Using the above mentioned facts as clues, find a number which leaves a remainder of 9 when divided by 10, a remainder of 8 when divided by 9 and a remainder of 7 when divided by 8.

Your solution here:

Chapter 2 FACTORS \& MULTIPLES

5 \squareis a 3-digit number with digits $\sqrt[3]{ }$, \square \bigcirc \mathcal{W} is a multiple of 4 and $\overparen{W}+\square+\square=21, W \square$ is a multiple of 4 and 6.
a) Is $\square \bigcirc$ an odd or even number ?
b) Find the value of

Your solution here:

The number \mathbf{N} is a multiple of 4 . It lies between 10 and 40. 3 is a factor of \mathbf{N}. When 4 is added to N, it becomes a multiple of 7 .
a) Find N
b) Find the smallest number that should be
 subtracted from \mathbf{N} to make it a multiple of 5
a) N is a multiple of 3 and 4

Multiples of $3: 3,6,9, \underline{\mathbf{1 2}}, 15,18,21, \underline{\mathbf{2 4}}, 27,30, \underline{36}, 39$
Multiples of $4: 4,8, \underline{\mathbf{1 2}}, 16,20, \underline{\mathbf{2 4}}, 28,32, \underline{\mathbf{3 6}}$
$12+4=16 ; 24+4=28 ; 36+4=40$
Only 28 is a multiple of 7
Hence, $N=24$
Shortcut : 12 is the 1st multiple of 3 and 4 . The next common multiples will be $2 \times 12,3 \times 12$ and so on.
b) $\mathrm{N}-\mathrm{O}=24$ (Not a multiple of 5)
$\mathrm{N}-1=23$ (Not a multiple of 5)
$\mathrm{N}-2=22$ (Not a multiple of 5)
$\mathrm{N}-3=21$ (Not a multiple of 5)
$N-4=20$ (Multiple of $5,20 \div 5=4$)
Therefore, the smallest number that should be subtracted is 4

Shortcut : Numbers that are multiples of 5 always have 0 or 5 as the last digit

Chapter 2 (Solutions) FACTORS \& MULTIPLES

A number \mathbf{P} has exactly 3 factors. \mathbf{P} is between 10 and 30 . Find P.
[Tip : Usually factors will appear in pairs. If there are an odd number of factors, the original number should be of the
 form $A \times A$, So that atleast there are 3 factors that are $1, A$ and $(A \times A)$ itself]
$3 \times 3=9$ (ignore as it is not in the range);
$4 \times 4=16 ; 5 \times 5=25$
Factors of $16: 1,2,4,8$, 16 (5 factors)
Factors of $25: 1,5,25$ (3 factors)
Therefore, $\mathrm{P}=25$

Mrs. Tina age now is a multiple of 4. She is younger than 50 years old and is twice as old as Mrs. Kavya now. Next year Mrs. Tina age will be a multiple of 5 . How old was Mrs. Kavya last year ?

Note that Mrs. Tina and Mrs Kavya indicate they are adults
Multiple of 4 indicates an even number
Since Mrs. Tina's age +1 year is a multiple of 5 (which ends with a ' 5 ' or ' 0 ' only), Mrs. Tina's age now must end with '4'

Mrs. Tina is younger than 50 years old now and she is an adult, so the possible age is either 24 or 44
$24 \div 2=12 ; 44 \div 2=22$
Mrs. Kavya should be 22 years old now since she is also an adult
$22-1$ = 21. Mrs. Kavya was 21 years old last year
a) Have you noticed that $A \times B$ is a multiple of A and a multiple of B ?

Using numbers between 0 and 10 for A and B, give
i) an example where $A \times B$ is not the smallest common multiple of A and B,

ii) an example where $A \times B$ is not the smallest common multiple (but still a common multiple) of A and B.

In the second case, is there any relationship between the smallest common multiple of A and B and the actual value of $A \times B$?
b) Using the above mentioned facts as clues, find a number which leaves a remainder of 9 when divided by 10 , a remainder of 8 when divided by 9 and a remainder of 7 when divided by 8 .
a) i) $A=3, B=4: A \times B=12.12$ is the smallest common multiple of 3 and 4. (This happens when A and B have no common factor other than 1)
ii) $A=4, B=6: A \times B=24$, which is a common multiple of 4 and 6

24 is a multiple of 12 , which is the smallest common multiple of 4 and 6
b) Note that the answer should be 1 less than a common multiple of 10, 9 and 8

A common multiple of $8 \& 9: 8 \times 9=72$
A common multiple of $8,9 \& 10$ is $72 \times 10=720$
(The smallest common multiple of $8,9 \& 10$ is 360)
One answer is : 720-1 = 719

FACTORS \& MULTIPLES

05

 is a 3-digit number with digits \sim, \square, \bigcirc \hat{W} is a multiple of 4 and $\tilde{W}+\square+\square=21, \tilde{W} \square$ is a multiple of 4 and 6.
a) Is $\square \bigcirc$ an odd or even number ?
b) Find the value of

a)
b) has to be 4 or 8 only since it is a multiple of 4

$$
\begin{aligned}
& \text { since } \overparen{W}+\square+\bigcirc=21 \\
& \text { if } \overparen{Z}=4, \square+\bigcirc=17 \text { and } \\
& \text { if } \overparen{Z}=8, \square+\bigcirc=13
\end{aligned}
$$

You will see that only 498,876 and 894 satisfy the above two conditions and the fact that the number is even.

Of these numbers, only 876 is a multiple of both 4 and 6 So, $\because \square \square=876$

